Doubel Combustion Chamber

All Incinerators are Doubel Combustion Chamber with One Fuel Burner Each. After Burner Technology for Completely Combustion and Cleaner World.

Read More

High Temperature Incineration

Temperature Range 800 Degree to 1200 Degree in Combustion Chamber. Temperature Thermocouple Monitor and Controller. High Quality Fire Brick and Refactory Cement.

Read More

Get Lastest News

There are latest incinerator news like technical, public news, business tender for medical waste incinerator,animal incineration, pet cremation

Read More

Nanjing Clover Medical Technology Co.,Ltd.

Email: sales@clover-incinerator.com | Tel: +86-25-8461 0201

Regular model incinerator for market with burning rate from 10kgs to 500kgs per hour and we always proposal customer send us their require details, like waste material, local site fuel and power supply, incinerator operation time, etc, so we can proposal right model or custom made with different structure or dimensions.
Incinerator Model YD-100 is a middle scale incineration machine for many different usage: for a middle hospital sickbed below 500 units, for all small or big size family pets (like Alaskan Malamute Dog), for community Municipal Solid Waste Incineration, etc. The primary combustion chamber volume is 1200Liters (1.2m3) and use diesel oil or natural gas fuel burner original from Italy.

Latest Post

HICLOVER Incinerators

HICLOVER, Nanjing Clover Medical Technology Co.,Ltd, supply system solutions for medical environmental protection, animal and pet cremation engineering, other municipal solid waste incineration project.

We supply single combustion chamber, double combustion chambers, three combustion chambers and multi-combustion chambers waste incinerators for laboratory, clinic, hospital, medical center, hygiene clinical waste destruction with medical disposable, biological waste, medical plastic waste, hazardous waste, red bag waste, needle disposal, gauze and bandages, sealed sharp containers, pathological waste, trace-chemotherapeutic wastes, etc.

Our range of incinerators cater for small to large scale animal cremation related businesses, such as poultry farms, cattle farms, sheep farms, pig farms, stables, kennels, testing laboratory, catteries, pet crematoriums.

The incinerator burn waste in primary combustion chamber and burn the smoke from primary combustion chamber again to make sure environmentally friendly with no black smoke, smelless, reduce pathogenic bacteria infection.
System solutions for medical waste environmental, including waste incineration, smoke emission treatment, high-temperature sterilization, ultraviolet sterilization lamp, waste shredder, needle destroyer, medical waste package, sharp containers, etc.
The pet cremation equipment humanized design with movable platform, small space covers for modern pet cremation business owner all over the world.
The containerized mobile incinerator mounted in ISO container before leave factory, pre-installation, no incineration house build construction, movable by truck and ultraviolet lamp sterilization inside.
HICLOVER is growing brand for environmental protection field, and market share with most of Africa, Middle East, Southeast Asia countries and part of North America, Europe territory. We are trusted partner for governmental organizations, non-profit organizations, international contractors, logistics organizations, military, pet cremation business owners, etc. We have export experience more than 40 countries, including war zone like Iraq, Afghanistan, Somalia, South Sudan.

We are china incinerator manufacturer, contractor and exporter. Manufacturer make reasonable price for incinerator customer, supply medical incinerator, hospital incinerator, animal incinerators, hog incinerators, pet cremation equipment, small incinerator, pet incinerator, animal incinerator, portable incinerator, small animal incinerator, infectious waste pyrolysis machine, laboratory incinerator. HICLOVER help customer reduce purchase budget, custom made function, quality products and friendly service.

 

Tel: +86-25-84610201 Email: [email protected]  Website: www.hiclover.com
Key Features:

— Full range incinerator with Economized Small Scale incinerator, Standard Small-Large Scale incinerator, General Municipal Solid Waste Incinerator, Pet and Animal Cremation, Containerized Mobile Incinerator, High Efficient Environmental Waste Incinerator.

— Single combustion chamber, double combustion chambers, three combustion chambers and multi-combustion chambers waste incinerators.
— System solutions for medical waste environmental.
— High burn rate, from 5kgs to 1000kgs per hour.
— New Design for pet animal cremation business.
— HICLOVER, trusted partner with years of experience.
Items/Model TS10(PLC) TS20(PLC) TS30(PLC) TS50(PLC)
Burn Rate (Average) 10 kg/hour 20 kg/hour 30 kg/hour 50 kg/hour
Control Mode PLC Auto. PLC Auto. PLC Auto. PLC Auto.
Combustion Chamber 100L 210L 330L 560L
Internal Dimensions 50x50x40cm 65x65x50cm 75x75x60cm 100x80x70cm
Secondary Chamber 50L 110L 180L 280L
Smoke Filter Chamber Dry Scrubber Dry Scrubber Dry Scrubber Dry Scrubber
Feed Mode Manual Manual Manual Manual
Voltage 220V 220V 220V 220V
Power 0.75Kw 0.83Kw 0.99Kw 1.2Kw
Diesel Oil Consumption (kg/hour) Ave.8.4 Ave.10.9 Ave.13.3 Ave.16.9
Natural Gas Consumption (m3n/hour) Ave.10.1 Ave.13 Ave.16 Ave.20.2
Temperature Monitor Yes Yes Yes Yes
Temperature Protection Yes Yes Yes Yes
Oil Tank 100L 100L 100L 100L
Feed Door 30x30cm 45x40cm 55x50cm 70x55cm
Chimney 3Meter 3Meter 5Meter 5Meter
Chimney Type Stainless Steel Stainless Steel Stainless Steel Stainless Steel
1st. Chamber Temperature 800℃–1000℃ 800℃–1000℃ 800℃–1000℃ 800℃–1000℃
2nd. Chamber Temperature 1000℃-1200℃ 1000℃-1200℃ 1000℃-1200℃ 1000℃-1200℃
Residency Time 2.0 Sec. 2.0 Sec. 2.0 Sec. 2.0 Sec.
Gross Weight 1500kg 2200kg 3000kg 4500kg
External Dimensions 140x90x120cm 160x110x130cm 175x120x140cm 230x130x155cm

Items/Model TS100(PLC) TS150(PLC) TS300(PLC) TS500(PLC)
Burn Rate (Average) 100 kg/hour 150 kg/hour 300 kg/hour 500 kg/hour
Control Mode PLC Auto. PLC Auto. PLC Auto. PLC Auto.
Combustion Chamber 1200L 1500L 2000L 3000L
Internal Dimensions 120x100x100cm 150x100x100cm 170x120x100cm 210x120x120cm
Secondary Chamber 600L 750L 1000L 1500L
Smoke Filter Chamber Dry Scrubber Dry Scrubber Dry Scrubber Dry Scrubber
Feed Mode Manual Manual Manual Manual
Voltage 220V 220V 220V 220V
Power 1.38Kw 1.69Kw 2.57Kw 4.88Kw
Diesel Oil Consumption (kg/hour) Ave.20.4 Ave.24.2 Ave.33 Ave.44
Natural Gas Consumption (m3n/hour) Ave.24.5 Ave.29 Ave.39.6 Ave.52.8
Temperature Monitor Yes Yes Yes Yes
Temperature Protection Yes Yes Yes Yes
Oil Tank 200L 300L 500L 500L
Feed Door 80x60cm 80x60cm
Chimney 10Meter 10Meter 14Meter 14Meter
Chimney Type Stainless Steel Stainless Steel Stainless Steel Stainless Steel
1st. Chamber Temperature 800℃–1000℃ 800℃–1000℃ 800℃–1000℃ 800℃–1000℃
2nd. Chamber Temperature 1000℃-1200℃ 1000℃-1200℃ 1000℃-1200℃ 1000℃-1200℃
Residency Time 2.0 Sec. 2.0 Sec. 2.0 Sec. 2.0 Sec.
Gross Weight 6000kg 8500kg 11000kg 16000kg
External Dimensions 260x150x180cm 300x160x190cm 400x210x300cm 450x210x300cm
smart ash incinerator, incinerators, animal incinerators price mobile incinerator design,

Incinerator capable of treating between 300 & 500 kgs fitted with the wet scrubber system

Automatic loading and reloading with capacity of 10 to 12 tons per day working with gas treatment methods and gas fuel and should comply with the European Standards.the Government Hospital for Medical Waste Incinerator with the following Specifications. they are having general wastes like tissues, plastic bottles etc ,wastes coming from labour camps, to be incinerated, they need, 50kg/hr incinerator
MEDICAL WASTE INCINERATOR.our hospital produce  40 kg every day from all waste material
–          Capacity: 1000 kg/h
–          Type waste: industrial waste
–          Other requirements: Automatic waste loading system and exhaust treatment system.
1. Capacity: 100kgs per batch
2. Temperature
I. Primary Chamber 600- 800
ii. Secondary chamber 850- 1500
3. Consumption per batch: 3.2hrs
4. Fuel consumption: 7 litres  per batch. Incinerator capable of treating between 300 & 500 kgs fitted with the wet scrubber system.complete Incinerator with a capacity of 500kgs/ hr with a wet scrubber unit. a 10-20Kg per hour of domestic waste? Also, I would like to know what is the minimum capacity incinerator you have in case we need something smaller?a Waste Incinerator of 500 Metric Tonne per day burning capacity as I am in possession of a large volume of mixed/municipal waste (4/5 million tonnes) of the following composition (52% organic, 12% plastic, 16% paper, 6% metal, 4% glass and 10% other).The EU codes of the waste are as follows: 20 03 01, 19 12 10 and 19 12 12.
One of the key deciding factors of the potential supplier is the energy consumption of the plan, indicated either per hour or per day and I would appreciate if such information can be made available.

three chambered incinerator

SPECIFICATIONS OF THE MEDICAL/BIOLOGICAL WASTE INCINERATOR

  • It should be a three chambered incinerator
  • The load capacity of 250 kg
  • The housing for the incinerator should be able to withstand the temperatures and other operational requirements.
  • The chimney should have a strong refractory lining of special type of cement to withstand temperatures more than 1200o
  • It should have a strong base for the machine to keep it stable, firm and secure during its operational lifespan.
  • The primary (combustion) and the secondary (scorching) chambers to be fitted with burners for effective combustion.
  • In the third chamber, scrubbers and precipitators will need to be installed as pollution control equipment before emission of gases into the atmosphere.
  • A system for continuous emission Monitoring and Environmental Monitoring.
  • A mechanism with which to treat the waste water before discharge into the sewerage system.
  • Temperature control and monitoring devices (probe thermometer) should be availed to ensure that the right temperatures are attained in the chambers during operation.
  • Motor (fans) sufficient to induce enough air into the combustion chambers and direct the gases towards the flue 9 chimney).
  • High power electricity and emergency generator connection for automated ignition purposes.
  • The chimney should be tall enough and be at least one meter above the tallest building in the vicinity.
  • The fuel tank (industrial diesel) to be constructed next to but out side the incinerator housing for security purposes and to prevent fire hazards. Capacity of 250.

Other Requirements

  • Training of all the personnel involved in health care waste (HCW) management.

The Automatic Feeding system of the Incinerator

  • Automatic waste loading mechanism with conveyor belts. These will lead the waste into the first primary chamber.
  • An Automatic bottom ashes discharge system.

Programme on Small Scale Medical Waste Incinerators for Primary Health Care Clinics

TABLE OF CONTENTS

  1. OBJECTIVE OF THE PROGRAMME 4
  2. STRUCTURE OF THE PROGRAMME 4
  3. COLLABORATORS INVOLVED IN THE PROGRAMME 4
  4. STAKEHOLDERS INVOLVED IN THE PROGRAMME 4
  5. LABORATORY TRIALS 5
  6. FIELD TRIALS 13

 

 

 

1.     OBJECTIVE OF THE PROGRAMME

 

The objective of the programme is to select technical criteria suitable for tender specification purposes that will enable the South African Department of Health to obtain the services and equipment necessary for the primary health care clinics to carry out small-scale incineration for the disposal of medical waste.

 

2.     STRUCTURE OF THE PROGRAMME

 

The test programme is being carried out in phases, as follows:

Phase 1         A scoping study to decide the responsibility of the different parties and

consensus on the test criteria and boundaries of the laboratory tests. The criteria for accepting an incinerator on trial was approved by all parties involved.

Phase 2         Laboratory tests with a ranking of each incinerator and the selection of the incinerators to be used in the field trials.

Phase 3         Completion of field trials, to assess the effectiveness of each incinerator under field conditions.

Phase 4         Preparation of a tender specification and recommendations to the DoH for the implementation of an ongoing incineration programme.

 

This document provides feedback on phases 2 and 3 of the work.

 

 

 

3.     COLLABORATORS INVOLVED IN THE PROGRAMME

 

SA Collaborative Centre for Cold Chain Management SA National Department of Health

CSIR

Pharmaceutical Society of SA World Health Organisation UNICEF

 

 

 

4.     STAKEHOLDERS INVOLVED IN THE PROGRAMME

 

The following stakeholders participated in the steering committee:

 

  • Dept of Health (National & provincial levels) (DoH)
  • Dept of Occupational Health & Safety (National & provincial levels)
  • Dept of Environmental Affairs & Tourism (National & provincial levels) (DEAT)
  • Dept of Water Affairs & Forestry (National & provincial levels) (DWAF)
  • Dept of Labour (National & provincial levels) (DoL)
  • National Waste Management Strategy Group
  • SA Local Government Association (SALGA)
  • SA National Civics Organisation (SANCO)
  • National Education, Health and Allied Workers Union (NEHAWU)

 

 

  • Democratic Nurses Organisation of SA (DENOSA)
  • Medecins Sans Frontieres
  • SA Association of Community Pharmacists
  • Mamelodi Community Health Committee
  • Pharmaceutical Society of SA
  • CSIR
  • UNICEF
  • WHO
  • SA Federation of Hospital Engineers

 

 

International visitors:

  • Dr Luiz Diaz – WHO Geneva and International Waste Management , USA
  • Mr Joost van den Noortgate – Medecins Sans Frontieres, Belgium

 

 

 

 

5.     LABORATORY TRIALS

 

5.1.   Objective of the laboratory trials

 

  • Rank the performance of submitted units to the following criteria:

y Occupational safety

y Impact on public health from emissions

y The destruction efficiency

y The usability for the available staff

 

  • The panel of experts for the ranking consisted of a:

y Professional nurse; Mrs Dorette Kotze from the SA National Department of Health

y Emission specialist; Dr Dave Rogers from the CSIR

y Combustion Engineer; Mr Brian North from the CSIR

 

5.2.   Incinerators received for evaluation

 

Name used in report Model no. Description Manufacturer
C&S Marketing

incinerator

SafeWaste Model Turbo

2000Vi

Electrically operated fan supplies combustion air

– no auxiliary fuel

C&S Marketing cc.
Molope Gas incinerator Medcin 400 Medical

Waste Incinerator

Gas-fired incinerator Molope Integrated

Waste Management

Molope Auto incinerator Molope Auto Medical

Waste Incinerator

Auto-combust incinerator – uses wood

or coal as additional fuel to facilitate incineration

Molope Integrated

Waste Management

 

Name used in report Model no. Description Manufacturer
PaHuOy

incinerator

Turbo Stove Auto-combust unit,

using no additional fuel or forced air supply

Pa-Hu Oy

 

 

5.3.   Emission testing: laboratory method

 

Sampling of emissions followed the US-EPA Method 5G dilution tunnel method for stove emissions. Adjustments to the design were made to account for flames extending up to 0.5 m above the tip of the incinerator and the drop out of large pieces of ash. Emissions were extracted into a duct for isokinetic sampling of particulate emissions. The sampling arrangement is shown by a schematic in Figure 1. A photograph of the operation over the Molope gas fired incinerator unit is shown in Figure 2.

 

All tests were performed according to specified operating procedures. The instructions provided by the supplier of the equipment were followed in the case of the C&S Marketing Unit. No operating procedures were supplied with the Molope Gas, Molope auto-combustion and PaHuOy units. These procedures were established by the CSIR personnel using their previous experience together with information provided by the supplier.

 

Test facilities were set up at the CSIR and measurements were carried out under an ISO9001 system using standard EPA test procedures or modifications made at the CSIR.

 

 

 

Figure 1. Schematic diagram of the laboratory set-up

 

 

 

 

 

Figure 2:Photograph of air intake sampling hood over Molope gas incinerator

 

 

 

5.4.   RANKING RESULTS OF THE LABORATORY TRIALS

 

Using the criteria listed under section 4.1 above, the incinerators were ranked as followed:

 

  Molope gas-fired

unit

Molope wood-fired

unit

C&S electric

unit

PaHuOy wood-fired

unit

Safety 6.8 4.8 5.5 3.3
Health 5.5 3.5 4.3 2.3
Destruction 9 2 6 1
Usability 2 3 3 5
Average 5.8 3.3 4.7 2.9

 

 

5.5.   EMISSION RESULTS OF THE LABORATORY TRIALS

 

Quantitative measurements were used to rank the units in terms of destruction efficiency and the potential to produce hazardous emissions.

 

Conformance to the South African Department of Environmental Affairs and Tourism’s (DEAT) recommended guidelines on emissions from Large Scale Medical Waste Incinerators is summarized in Table 1. The measurements are listed1 in Table 2.

 

 

 

Table 1: Summary qualitative results

 

Parameter Measured Units Molope

 

Gas-fired

Molope

 

Wood-fired

C&S

 

Electric

PaHuOy

 

Wood-fired

SA DEAT

Guidelines

Stack height m × × × × 3 m above

nearest building

Gas velocity m/s × × × × 10
Residence time s × × × × 2
Minimum combustion

temperature

ºC 4 × × × > 850
Gas combustion

efficiency

% × × × × 99.99
Particulate emissions mg/Nm3 4 × 4 × 180
Cl as HCl mg/Nm3 × 4 4 × < 30
F as HF mg/Nm3 4 4 4 4 < 30
Metals mg/Nm3 4 × × 4 < 0.5 and

< 0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Emission concentrations are reported in accordance with the South African reporting requirements, ie, normalized to Normal Temperature (0

oC) and Pressure (101.3 kPa) and corrected to a nominal concentration of

8 % of CO2 on a dry gas basis. If a measurement fell below the detection limit for the method is it either reported as the detection limit or as N.D., ie, not detectable.

 

 

Table 2: Detailed quantitative results

 

 

Parameter Measured *

 

Units

 

Molope gas

 

Molope auto

 

C&S

 

PaHuOy

 

SA Process Guide1

 

Comments

 

Stack height

 

m

 

1.8

 

1.8

 

1.9

 

0.3

 

3 m above nearest building

 

None of these unite has a stack. The height of the exhaust vent is taken as the stack height. If it is above the respiration zone of the operator it provides some protection from exposure to smoke.

 

Gas velocity

 

m/s

 

0.8

 

0.5

 

1.1

 

0.5

 

10

 

Gas velocities vary across the stack for the Molope gas, Molope auto-combustion, and the PaHuOy units.

 

Residence time

 

s

 

0.4

 

0.7

 

0.6

 

0.4

 

2

 

Residence time is taken to be the total combustion time, and the maximum achievable

 

Minimum combustion zone temperature

oC  

800 -900

 

400 – 650

 

600 – 800

 

500 – 700

 

> 850

 

Molope auto-combustion temperatures are expected to be higher as the centre of the combustion zone is not expected to be at the measurement location.

 

CO2 at the stack tip

 

% vol

 

2.64

 

3.75

 

4.9

 

3.25

 

8.0

 

Actual emission concentrations are less than the values reported here, which are normalized to 8 % CO2 and Normal temperature and pressure for reporting purposes. They are lower between 4 to 8 times.

 

Gas

 

%

 

99.91-

 

98.8 -98.4

 

99.69-

 

98.9

 

99.99

 

Most accurate measurement in

Combustion 99.70 99.03 the duct where mixing of exhaust
efficiency gases is complete. Results of two

trials.

 

Particulate emissions entrained in exhaust gas

mg/Nm3  

102

 

197

 

130

 

338

 

180

 

The total emissions are the sum of the both entrained and un- entrained particulates. Emissions are lower than expected for such units and this is attributed to the absence of raking which is the major source of particulate emissions from incinerators without an emission control

system.

 

Particulate fall- out

mg/Nm3  

42

 

105

 

n.d.

 

n.d.

 

 

Large pieces of paper and cardboard ash rained out of the emissions. Totalling 0.8 to 2 g over a +/- 2 minute period.

 

Soot in particulates

 

%

 

42.2

 

58.1

 

48.7

 

84.8

 

 

Correlates directly with gas combustion efficiency

 

1 Emission concentrations are reported in accordance with the South African reporting requirements, ie, Normalized to Normal Temperature (0

oC) and Pressure (101.3 kPa) and corrected to a nominal concentration of

8 % of CO2 on a dry gas basis. If a measurement fell below the detection limit for the method is it either reported as the detection limit or as N.D., ie, not detectable.

 

 

Parameter Measured *

 

Units

 

Molope gas

 

Molope auto

 

C&S

 

PaHuOy

 

SA Process Guide1

 

Comments

 

% ash residual from medical waste

 

%

 

14.8

 

12.9

 

15.6

 

21.7

 

 

Measurement of destruction efficiency of the incinerator. Typical commercial units operate at 85-90 % mass reduction. PaHuOy is lower due to the melting and unburnt plastic.

 

Cl as HCl

mg/Nm3  

46

 

13

 

25

 

35 & 542

 

< 30

 

PaHuOy chloride concentrations varied considerably. This is expected due to the variability of the feed composition.

 

F as HF

mg/Nm3  

< 6

 

< 1

 

<2

 

< 1

 

< 30

 

Fluoride not found in this waste.

 

Arsenic (As)

mg/Nm3  

< 0.2

 

< 0.2

 

< 0.2

 

< 0.2

 

0.5

 

Arsenic is not expected as a solid.

 

Lead (Pb)

mg/Nm3  

< 0.4

 

< 0.4

 

< 0.4

 

< 0.4

 

0.5

 

Lead not expected in waste

 

Cadmium (Cd)

mg/Nm3  

< 0.2

 

< 0.2

 

< 0.2

 

< 0.2

 

0.05

 

Sensitivity of the x-ray method is adequate for ranking. Higher sensitivity not sought for this trial.

 

Chromium (Cr)

mg/Nm3  

< 0.1

 

0.7

 

0.7

 

< 0.1.

 

0.5

 

Chromium relative to iron ranges between 12 and 25% which is consistent with stainless steel needles

 

Manganese (Mn)

mg/Nm3  

< 0.1

 

0.3

 

0.3

 

< 0.1

 

0.5

 

Manganese may be a component in the stainless steel needle.

 

Nickel (Ni)

mg/Nm3  

< 0.1

 

0.3

 

< 0.1

 

< 0.1

 

0.5

 

Nickel may be a component in the needle.

 

Antimony (Sb)

mg/Nm3  

< 0.2

 

< 0.2

 

< 0.2

 

< 0.2

 

0.5

 

Not expected in this waste.

 

Barium (Ba)

mg/Nm3  

< 0.5

 

< 0.5

 

< 0.5

 

< 0.5

 

0.5

 

Lower sensitivity due to presence in the filter material

 

Silver (Ag)

mg/Nm3  

< 0.2

 

< 0.2

 

< 0.2

 

< 0.2

 

0.5

 

Not expected in this waste.

 

Cobalt (Co)

mg/Nm3  

< 0.1

 

< 0.1

 

< 0.1

 

< 0.1

 

0.5

 

Cobalt might be present in stainless steel.

 

Copper (Cu)

mg/Nm3  

< 0.5

 

< 0.5

 

< 0.5

 

< 0.5

 

0.5

 

Lower sensitivity due to copper in the sample blanks. May be background in the analytical equipment.

 

Tin (Sn)

mg/Nm3  

< 0.2

 

< 0.2

 

< 0.2

 

< 0.2

 

0.5

 

Tin not expected in this waste.

 

Vanadium (V)

mg/Nm3  

< 0.1

 

< 0.1

 

0.4

 

< 0.1

 

0.5

 

Vanadium might be present in stainless steel.

 

Thallium (Tl)

mg/Nm3  

< 0.4

 

< 0.4

 

< 0.4

 

< 0.4

 

0.05

 

Not expected in this waste. Sensitivity of the x-ray method is adequate for ranking. Higher sensitivity not sought for this trial.

 

 

 

5.6.   MAIN FINDINGS OF THE LABORATORY TRIALS

 

The main conclusions drawn from the trials are as follows:

 

:::          All four units can be used to render medical waste non-infectious, and to destroy syringes or render needles unsuitable for reuse.

:::                           The largest potential health hazard arises from the emissions of smoke and soot.              (the combustion efficiency of all units lies outside the

regulatory standards). The risk to health can be reduced by training operators to avoid the smoke or by installation of a chimney at the site.

:::          The emissions from small scale incinerators are expected to be lower than those from a wood fire, but higher than a conventional fire-brick-

lined multi-chambered incinerator.

:::          Incomplete combustion, and the substantial formation of smoke at low height rendered the PaHuOy unit unacceptable for field trials. Figure 3

below shows this unit during a trial burn. Molten plastic flowed out of

the incinerator, blocked the primary combustion air feed vents, and burnt outside of the unit.

 

 

 

Figure 3: Photo of PaHuOy incinerator during trial burn

 

 

5.7.   COMPARISON OF THE FIELDS TRIALS WITH THE LABORATORY TRIALS

 

The CSIR performed a quantitative trial in the field for gas combustion efficiency, temperature profiles and mass destruction rate on the Molope Auto wood-fired unit at the Mogale Clinic.

 

The results of this trial are compared to the laboratory trial results below:

 

  • Waste loading: Disposable rubber gloves were observed in addition to needles syringes, glass vials, bandages, dressings, and paper w
  • Temperatures and combustion efficiency: The same performance in gas combustion        efficiency   was    obtained    for    wood    .

Temperatures were higher but for a shorter time and this was

correlated with the type of wood available to the clinic. The fuel was burnt out before the medical waste was destroyed completely and this resulted in lower temperatures, lower combustion efficiency and higher emissions while burning the waste.

  • Emissions: Large amounts of black smoke were observed and this was correlated directly to cooling of the unit as the wood fuel was exhausted

prior to full ignition of the waste.

  • Destruction efficiency: The destruction efficiency was similar to that in the laboratory measurem
  • Usability: The unit is difficult to control as the result of the variability of the quality of wood
  • Acceptability: the smoke was not acceptable to the clinic, the community, or the local

 

It was concluded that:

  • The performance with fuel alone indicates that laboratory trial data can be used to predict emissions in the
  • The Molope Auto unit is too difficult to control for the available staff and fuel at the

 

 

 

5.8.   RECOMMENDATIONS FROM THE LABORATORY TRIALS

 

The following recommendations are made as the result of the laboratory trials:

:::     A comprehensive operating manual must be supplied with each unit.

Adequate training in the operation of the units must be provided, especially focussed on safety issues.

:::     It is recommended that the height of the exhaust vent on all units be

addressed.     In order to facilitate the dispersion of emissions and reduce the exposure risk of the operators.

:::     The suppliers of the incinerators must provide instructions for the safe handling and disposal of ash.

 

 

 

5.9.   RECOMMENDATIONS FROM THE STEERING COMMITTEE

 

 

 

After completion of the laboratory trials, the project steering committee recommended that the Molope Gas and C&S Marketing units be submitted for field testing. The Molope Auto was recommended for field testing on the condition that the manufacturer modified the ash grate so as to prevent the spillage of partially burnt needles and syringes.

 

 

 

6.     FIELD TRIALS

 

6.1.   OBJECTIVE OF THE FIELD TRIALS

 

The objective of the field trials was to obtain information in the field and assess the strengths and weaknesses of each of the incinerators during use at primary health care clinics.

 

A participative decision making process was used for the trials. It was based on expert technical evaluation by the CSIR and the National Department of Health as well as participation in the trials by experienced end users and participating advisors. All decisions were made by the Steering Committee, which consisted of representatives of stakeholders in the clinical and medical waste disposal process. These included representatives from the National, Provincial, and Local Government departments of Health, Safety and the Environment, as well as Professional Associations, Unions, NGOs, UNICEF, the WHO and local community representatives.

 

6.2.   CLINIC SELECTION

 

The Provinces in which the trials were done selected clinics for the field trials. The criteria set by the Steering Committee for the selection of the clinics were the following:

 

  • Location must be rural or under-serviced with

y No medical waste removal

y No existing incineration

y No transport

  • It must be in a high-density population area
  • Acceptable environmental conditions must prevail
  • Community acceptance must be obtained
  • Operator skill level to be used must be at a level of illiteracy

 

The clinics that were selected were as follows:

 

  • Steinkopf Clinic – Northern Cape Province – Gas incinerator

 

 

  • Marydale Clinic – Northern Cape Province – Gas incinerator
  • Mogale Clinic – Gauteng Province             – Auto combustion

incinerator, wood-fired.

  • Chwezi Clinic – KwaZulu-Natal Province – Gas incinerator
  • Ethembeni Clinic- KwaZulu-Natal Province – Auto-combustion electrical

incinerator

 

 

 

 

 

 

MAP OF SOUTH AFRICA INDICATING WHERE THE CLINICS ARE SITUATED

 

 

 

 

 

 

 

 

NORTHERN PROVINCE

 

GAUTENG PROVINCE

 

 

 

 

 

NORTH WEST PROVINCE

MPUMALANGA PROVINCE

 

 

 

 

 

 

FREE STATE PROVINCE

 

 

NORTHERN CAPE PROVINCE

 

 

KWAZULU-NATAL PROVINCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I:\UnitPublic\Valerie\Technet 99\Working papers\Session 3\rogers.doc

 

 

 

EASTERN CAPE PROVINCE

 

 

WESTERN CAPE PROVINCE

 

 

6.3.   COORDINATION OF THE TRIALS

 

The criteria for the ranking of the incinerators in accordance with performance in the field were:

 

  • Safety (occupational and public health)
  • Destruction capability
  • Usability
  • Community acceptability

 

The South African National Department of Health coordinated the field trials.

 

Information regarding the field trials as well as questionnaires were supplied to the coordinators in the participating provinces.

 

The team in the field consisted of the operator, supervisor and inspector (coordinator). The manufacturer of the incinerators did the training of the operators.

 

The questionnaires used during the trials were set so as to obtain information with regard to the criteria set for the ranking of the incinerators in accordance with performance in the field. The questionnaires were received from the clinics at two-weekly intervals.

 

Questions with regard to the criteria were the following:

 

A.  SAFETY (occupational and public health)

 

  • Smoke Emission

y Volume and thickness

y Colour

y Odour

  • Ash Content
  • Are the filled sharps boxes and soiled dressings stored in a locked location while waiting to be incinerated?

 

 

 

B.  DESTRUCTION CAPABILITY

 

  • Destruction Rate

y Complete

y Partial

y Minimal

y Residue content

 

C.  USABILITY (for the available staff)

  • Can the incinerator be used easily?

 

 

  • Is the process of incineration safe?
  • Has training been successful?
  • Is protective clothing such as gloves, goggles, dust masks and safety boots available?

 

D.  COMMUNITY ACCEPTABILITY

 

  • What is the opinion of the following persons on the use of the incinerator?

y Operator

y Nurse

y Head of the clinic

y Local Authority representative

y Community leader

 

During the trials the clinics were visited and the incinerators evaluated by members of the Steering Committee and the CSIR as well as Dr L Diaz from WHO, Mr M Lainejoki from UNICEF and the coordinator from the National Department of Health.

 

6.4.   QUESTIONNAIRE RESULTS

 

6.4.1.      MOGALE CLINIC

 

Type of incinerator at the clinic: Molope Auto-Combustion (Fired with wood)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 & 5: Molope Auto wood-fired incinerator during field trials at Mogale clinic

 

 

A.               SAFETY (occupational and public health)

 

  1. The process of incineration with this unit was considered by the operator, supervisor and the inspector as unsafe because there is no protective cage around the During the process the incinerator becomes very hot and this could result in injury to the operator.

 

  1. The smoke emission of this incinerator had a volume and thickness which was heavy and black, with a distinct unpleasant odour, and was considered This could cause a pollution problem.

 

 

 

B.               DESTRUCTION CAPABILITY

 

  1. The needles and vials were not completely destroyed but were rendered unsuitable for re-use.

 

  1. The soft medical waste was completely destroy

 

 

 

C.               USABILITY

 

Difficulty in controlling the operating temperature and avoiding smoke emissions made this incinerator user unfriendly.

 

D.               COMMUNITY ACCEPTABILITY

 

As a result of the heavy, black smoke emission the unit was not acceptable to the community.

 

 

6.4.2.      ETHEMBENI CLINIC:

 

 

Figure 6: C&S Marketing Auto Combust Electrical Incinerator At Ethembeni Clinic

 

 

 

Type Of Incinerator: C&S Auto-Combustion (Uses an electrically actuated fan)

 

 

 

A.               SAFETY (occupational and public health)

 

  1. The operator, supervisor and inspector considered this incinerator easy to operate with no danger to the Removal of the ash from the drum for disposal in a pit is, however, considered difficult, as the drum is heavy. Removal of the incinerator lid before it has been allowed to cool has been identified as a potential danger to the operator.

 

  1. Emission of smoke from this incinerator was not considered ex The volume and thickness was evaluated as moderate with no pollution experienced.

 

 

 

B.               DESTRUCTION CAPABILITY

 

  1. The needles and vials were not completely destroyed but were rendered unsuitable for re-use.
  2. The soft medical waste was completely destroy

 

 

 

C.               USABILITY

 

Considered user friendly by operator, supervisor and inspector.

 

D.               COMMUNITY ACCEPTABILITY

 

The incinerator was accepted by the community and was not considered to be harmful.

 

 

 

6.4.3.      CHWEZI CLINIC, MARYDALE CLINIC AND STEINKOPF CLINIC:

 

Type of incinerator: Molope Gas incinerator

 

Figure 7:       Molope Gas incinerator during field trials at Marydale clinic

 

A.               SAFETY (occupational and public health)

 

  1. The operator, supervisor and inspector considered this incinerator easy to operate with minimal danger to the
  2. Smoke emissions were not excessive and were reported to be minim

 

B.               DESTRUCTION CAPABILITY

 

  1. Sharps not completely destroyed but were rendered unsuitable for re-use.

 

 

  1. Soft medical waste completely destroy

 

C.               USABILITY

 

This incinerator was considered user friendly.

 

 

 

D.               COMMUNITY ACCEPTABILITY

 

 

 

The incinerator was accepted by the community and was not considered to be harmful.

 

 

 

6.5.   RANKING

 

 

INCINERATOR RANKING
Molope Gas 1
C&S Auto-Combustion (Uses electrical fan)  

2

Molope Auto- Combustion (Fired with

wood, coal also an option)

 

3

 

 

 

 

6.6.   OUTCOME OF THE FIELD TRIALS

 

Incinerator Safety Destruction Capability Usability Community Acceptability
Molope Gas Good Good Good Good
C&S Auto- Combustion

(Uses Electricity)

 

Good

 

Good

 

Good

 

Good

Molope Auto-

Combust Incinerator

Un-Acceptable Good Un-Acceptable Un-Acceptable

 

animal incinerators for sale

SMART ASH INCINERATORS FOR THE DISPOSAL OF HAZARDOUS WASTE
?    Quantity: 20 units
?    The Incinerator works with a 55 gallon open ended steel drum
?    The unit operates without fuel and used only 120v or 220v electricity for the blowers
?    Unit is capable of burning oil contaminated waste and medical wastes with a moisture content of 0 to 15%
?    Each unit is supplied with two steel drums, so that a spare is available
?    Each unit to be supplied with recommended spare parts
?    Warranty – minimum 12 months from receipt and acceptance
?    Instruction manuals to be provided in French and English

HAZARDOUS WASTE TO BE INCINERATED

Hazardous Solid Chemicals
Different types of combustible solids, used textiles, grease and toner cartridges, chemicals for water purification and  photographic consumables, and plastic material, empty metal/ plastic cans that still contain remnants of hazardous materials, oil absorbent

Hazardous Liquid Chemicals
Mainly different types of Acid, Paint, Varnish, White Spirit, Aromatic-Less Solvents, Synthetic Liquid For Brake Systems, Aircraft De-icing Liquid, Hydraulic And Compressor Oil, Freon used in some older refrigeration units, Insecticide Liquid/Spray, Air Refresh Spray and other similar chemicals

Contaminated Fuel
Mainly diesel or gasoline contaminated by water or solvents

Used and/or Contaminated Oil
Used motor oils and/or mineral oils unfit for their originally intended use. Mainly motor/gear box oil (approx. 80%) contaminated by a  mixture of white spirit and acetone (approx. 5%) hydraulic liquid (approx 5%)

Contaminated Water
Waste oils/water, leaches, hydrocarbons/water mixtures, emulsions and leachate

Contaminated Soil
Soil polluted by oil fuel of chemicals,
Soil polluted that has to be recycled in landfill,
Soil treated and replaced on site

Oil Contaminated Solids
Rags, absorbents, cardboard, oil and fuel filters, air filters are not considered as hazardous materials

Electronic Waste
Waste electrical or electronic appliances or assemblies, including printed circuit boards containing toxic material and/or heavy metal and/or emitting low radiation

Used Battery Cells
Dry battery, ups battery or other types unsorted waste batteries/battery cells, containing materials that are hazardous

Used Lead Acid Batteries
Waste lead acid batteries, drained/ un-drained and whole or crushed

Hazardous Medical Waste
Clinical and related waste arising from medical, nursing or similar practices and waste generated in clinics during the investigation or treatment of patients (bio hazard)

Expired Drugs Solid
Waste pharmaceuticals, drugs and medicines, including sensitive medicines

Expired Drugs Liquid
Waste liquid pharmaceuticals, different type liquid chemicals for treatment, medical grease and paraffin based expired medicines

Expired and/Or Contaminated Food
Spoiled fresh food or unusable meal ready to eat meals (MRE’s) dry food

Incinerator type of pyrolytic medical waste incinerator capacity


Including:Incinerator: Structure to be specified

Together with the following technical information:

1.      1 pharma solid waste incinerator unit containing 2 combustion chambers and predicated on steel base with scrubbing

system.

2.      Working hour /day: minimum 10 hours/day. Capacity: Approximated 150 kg/hr. Over 10 hrs.

4.      Wastes characteristics:

·         BULK density: 70 — 100 pound / bm³.

·         Calorific value: 2000-3000 kcal / hr.

·         Moisture content: 20-30%by weight.

·         Ash content: two — 8 percent by weight.

·         Plastic content: 15-20 percent by weight.

5.      Two combustion chambers.

6.      Operating temperatures:

·         First chamber: less than 700 – 800 °c.

·         Second chamber: less than 1200 °c (during steady operation).

7.      The burners should be automatically switched off if some of the combustion chambers is open.

8.      The burners of the first and second combustion chambers are selected for burning gas oil (light fuel).

9.      Automatic loader and unloader to be provided.

10.     Exhaust gases should be comply with International Environmental code and requirements.

– A receiving cage for biomedical waste;

– A combustion chamber using a chimney using a filter to keep the ash;

Chimney segment: about 300 cm; With a minimum height of 6 m

Door dimensions: approximately 50×60 cm

Supplied using a 500 liters gas tank along with all required accessories for installation.
The mark to be given
Capacity: 20-50 pound / hour
Fireplace: 4 to 6 meters ;


Clover's Social Media